Genetic Dissection of Mutual Interference between Two Consecutively Learned Tasks inDrosophila

This article has 3 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Animals can continuously learn different tasks to adapt to changing environments and therefore have strategies to effectively cope with inter-task interference, including both proactive interference (Pro-I) and retroactive interference (Retro-I). Many biological mechanisms are known to contribute to learning, memory, and forgetting for a single task, however, mechanisms involved only when learning sequential different tasks are relatively poorly understood. Here, we dissect the respective molecular mechanisms of Pro-I and Retro-I between two consecutive associative learning tasks inDrosophila. Pro-I is more sensitive to inter-task interval (ITI) than Retro-I. They occur together at short ITI (<20 min), while only Retro-I remains significant at ITI beyond 20 min. Acutely overexpressing Corkscrew (CSW), an evolutionarily conserved protein tyrosine phosphatase SHP2, in mushroom body (MB) neurons reduces Pro-I, whereas acute knockdown of CSW exacerbates Pro-I. Such function of CSW is further found to rely on the γ subset of MB neurons and the downstream Raf/MAPK pathway. In contrast, manipulating CSW does not affect Retro-I as well as a single learning task. Interestingly, manipulation of Rac1, a molecule that regulates Retro-I, does not affect Pro-I. Thus, our findings suggest that learning different tasks consecutively triggers distinct molecular mechanisms to tune proactive and retroactive interference.

Related articles

Related articles are currently not available for this article.