Striking image (AI generated)

Small leucine-rich proteoglycans inhibit CNS regeneration by modifying the structural and mechanical properties of the lesion environment

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Extracellular matrix (ECM) deposition after central nervous system (CNS) injury leads to inhibitory scarring in mammals, whereas it facilitates axon regeneration in the zebrafish. However, the molecular basis of these different fates is not understood. Here, we identify small leucine-rich proteoglycans (SLRPs) as a causal factor in regeneration failure. We demonstrate that the SLRPs Chondroadherin, Fibromodulin, Lumican, and Prolargin are enriched in human, but not zebrafish, CNS lesions. Targeting SLRPs to the zebrafish injury ECM inhibits axon regeneration and functional recovery. Mechanistically, we find that SLRPs confer structural and mechanical properties to the lesion environment that are adverse to axon growth. Our study reveals SLRPs as previously unknown inhibitory ECM factors in the human CNS that impair axon regeneration by modifying tissue mechanics and structure.

ONE SENTENCE SUMMARY

Composition, structural organization, and mechanical properties of the injury ECM direct central nervous system regeneration.

Related articles

Related articles are currently not available for this article.