Salmonella-induced SIRT1 and SIRT3 are crucial for maintaining the metabolic switch in bacteria and host for successful pathogenesis
Abstract
Sirtuins are the major players in host immuno-metabolic regulation. However, the role of sirtuins in the modulation of the immune metabolism pertaining to Salmonellosis is largely unknown. Here, our investigation focussed on the role of two important sirtuins, SIRT1 and SIRT3, shedding light on their impact on intracellularSalmonella’s metabolic switch and pathogenesis establishment. Our study indicated the ability of the liveSalmonellaTyphimurium to differentially regulate the levels of SIRT1 and SIRT3 for maintaining the high glycolytic metabolism and low fatty acid metabolism inSalmonella. Perturbing SIRT1 or SIRT3 through knockdown or inhibition, resulted in a remarkable shift in the host metabolism to low fatty acid oxidation and high glycolysis. This switch led to decreased proliferation ofSalmonellain the macrophages. Further,Salmonella-induced higher levels of SIRT1 and SIRT3 led to a skewed polarization state of the macrophages from a pro-inflammatory M1 state toward an immunosuppressive M2 making it more conducive for the intracellular life ofSalmonella. Alongside, governing immunological functions by modulating p65 NF-κB acetylation, SIRT1, and SIRT3 also skewSalmonella-induced host metabolic switch by regulating the acetylation status of HIF-1α and PDHA1. Interestingly, though knock-down of SIRT1/3 attenuatedSalmonellaproliferation in macrophages, inin vivomice-model of infection, inhibition or knockdown of SIRT1/3 led to more dissemination and higher organ burden which can be attributed to enhanced ROS and IL-6 production. Our study hence reports for the first time thatSalmonellamodulates SIRT1/3 levels to maintain its own metabolism for successful pathogenesis.
Related articles
Related articles are currently not available for this article.