Binding and sequestration of poison frog alkaloids by a plasma globulin

This article has 10 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Alkaloids are important bioactive molecules throughout the natural world, and in many animals they serve as a source of chemical defense against predation. Dendrobatid poison frogs bioaccumulate alkaloids from their diet to make themselves toxic or unpalatable to predators. Despite the proposed roles of plasma proteins as mediators of alkaloid trafficking and bioavailability, the responsible proteins have not been identified. We use chemical approaches to show that a ~50 kDa plasma protein is the principal alkaloid binding molecule in blood from poison frogs. Proteomic and biochemical studies establish this plasma protein to be liver-derived alkaloid-binding globulin (ABG) that is a member of the serine-protease inhibitor (serpin) family. In addition to alkaloid binding activity, ABG sequesters and regulates the bioavailability of “free” plasma alkaloidsin vitro. Unexpectedly, ABG is not related to saxiphilin, albumin, or other known vitamin carriers, but instead exhibits sequence and structural homology to mammalian hormone carriers and amphibian biliverdin binding proteins. Alkaloid-binding globulin (ABG) represents a new small molecule binding functionality in serpin proteins, a novel mechanism of plasma alkaloid transport in poison frogs, and more broadly points towards serpins acting as tunable scaffolds for small molecule binding and transport across different organisms.

Related articles

Related articles are currently not available for this article.