The nutrient-sensing GCN2 signaling pathway is essential for circadian clock function by regulating histone acetylation under amino acid starvation

This article has 5 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Circadian clocks are evolved to adapt to the daily environment changes under different conditions. The ability to maintain circadian clock functions in response to various stress and perturbations is important for organismal fitness. Here, we show that the nutrient sensing GCN2 signaling pathway is required for robust circadian clock function under amino acid starvation inNeurospora. The deletion of GCN2 pathway components disrupts rhythmic transcription of clock genefrqby suppressing WC complex binding at thefrqpromoter due to its reduced histone H3 acetylation levels. Under amino acid starvation, the activation of GCN2 kinase and its downstream transcription factor CPC-1 establish a proper chromatin state at thefrqpromoter by recruiting the histone acetyltransferase GCN-5. The arrhythmic phenotype of the GCN2 kinase mutants under amino acid starvation can be rescued by inhibiting histone deacetylation. Finally, genome-wide transcriptional analysis indicates that the GCN2 signaling pathway maintains robust rhythmic expression of metabolic genes under amino acid starvation. Together, these results uncover an essential role of GCN2 signaling pathway in maintaining robust circadian clock function in response to amino acid starvation and the importance of histone acetylation at thefrqlocus in rhythmic gene expression.

Related articles

Related articles are currently not available for this article.