Direct visualization of emergent metastatic features within anex vivomodel of the tumor microenvironment
Abstract
Metabolic conditions such as hypoxia, nutrient starvation, and media acidification, together with interactions with stromal cells are critical drivers of metastasis. Since these conditions arise deep within tumor tissues with poor access to the bloodstream, the observation of nascent metastasesin vivois exceedingly challenging. On the other hand, conventional cell culture studies cannot capture the complex nature of metastatic processes. We thus designed and implemented anex vivomodel of the tumor microenvironment to study the emergence of metastatic features in tumor cells in their native 3-dimensional (3D) context. In this system, named 3MIC, tumor cells spontaneously create ischemic-like conditions, and it allows the direct visualization of tumor-stroma interactions with high spatial and temporal resolution. We studied how 3D tumor spheroids evolve in the 3MIC when cultured under different metabolic environments and in the presence or absence of stromal cells. Consistent with previous experimental and clinical data, we show that ischemic environments increase cell migration and invasion. Importantly, the 3MIC allowed us to directly observe the emergence of these pro-metastatic features with single-cell resolution allowing us to track how changes in tumor motility were modulated by macrophages and endothelial cells. With these tools, we determined that the acidification of the extracellular media was more important than hypoxia in the induction of pro-metastatic tumor features. We also illustrate how the 3MIC can be used to test the effects of anti-metastatic drugs on cells experiencing different metabolic conditions. Overall, the 3MIC allows us to directly observe the emergence of metastatic tumor features in a physiologically relevant model of the tumor microenvironment. This simple and cost-effective system can dissect the complexity of the tumor microenvironment to test perturbations that may prevent tumors from becoming metastatic.
Related articles
Related articles are currently not available for this article.