High-resolution structure of a mercury cross-linked ZIP metal transporter reveals delicate motions and metal relay for regulated zinc transport
Abstract
Zrt-/Irt-like protein (ZIP) divalent metal transporters play a central role in maintaining trace element homeostasis. The prototypical ZIP from Bordetella bronchiseptica (BbZIP) is an elevator-type transporter, but the dynamic motions and detailed transport mechanism remain to be elucidated. Here, we report a high-resolution crystal structure of a mercury-crosslinked BbZIP variant at 1.95 Å, revealing an upward rotation of the transport domain in the new inward-facing conformation and a water-filled metal release channel that is divided into two parallel pathways by the previously disordered cytoplasmic loop. Mutagenesis and transport assays indicated that the newly identified high-affinity metal binding site in the primary pathway acts as a “metal sink” to reduce the transport rate. The discovery of a hinge motion around an extracellular axis allowed us to propose a sequential hinge-elevator-hinge movement of the transport domain to achieve alternating access. These findings provide key insights into the transport mechanisms and activity regulation.
Related articles
Related articles are currently not available for this article.