Six3 and Six6 jointly regulate the identities and developmental trajectories of multipotent retinal progenitor cells in the mouse retina
Abstract
Formation, maintenance, and differentiation of tissue-specific progenitor cells are fundamental tasks during organogenesis. Retinal development is an excellent model for dissecting these processes; mechanisms of retinal differentiation can be harnessed for retinal regeneration toward curing blindness. Using single-cell RNA sequencing of embryonic mouse eye cups in which transcription factor Six3 was conditionally inactivated in peripheral retinas on top of germline deletion of its close paralog Six6 (“DKO”), we identified cell clusters and then inferred developmental trajectories in the integrated dataset. In control retinas, naïve retinal progenitor cells had two major trajectories leading to ciliary margin cells and retinal neurons, respectively. The ciliary margin trajectory was directly from naïve retinal progenitor cells at G1 phase, and the retinal neuron trajectory was through a neurogenic state marked byAtoh7expression. UponSix3andSix6dual deficiency, both naïve and neurogenic retinal progenitor cells were defective. Ciliary margin differentiation was enhanced, and multi-lineage retinal differentiation was disrupted. An ectopic neuronal trajectory lacking the Atoh7+ state led to ectopic neurons. Differential expression analysis not only confirmed previous phenotype studies but also identified novel candidate genes regulated bySix3/Six6. Six3 and Six6 were jointly required for balancing the opposing gradients of the Fgf and Wnt signaling in the central-peripheral patterning of the eye cups. Taken together, we identify transcriptomes and developmental trajectories jointly regulated by Six3 and Six6, providing deeper insight into molecular mechanisms underlying early retinal differentiation.
Related articles
Related articles are currently not available for this article.