Endo-Lysosome-Targeted Nanoparticle Delivery of Antiviral Therapy for Coronavirus Infections
Abstract
SARS-CoV-2 can infect cells through endocytic uptake, a process which is targeted by inhibition of lysosomal proteases. However, clinically this approach to treat viral infections has afforded mixed results, with some studies detailing an oral regimen of hydroxychloroquine accompanied by significant off-target toxicities. We rationalized that an organelle-targeted approach will avoid toxicity while increasing the concentration of the drug at the target. Here we describe a lysosome-targeted, mefloquine-loaded poly(glycerol monostearate-co-ε-caprolactone) nanoparticle (MFQ-NP) for pulmonary delivery via inhalation. Mefloquine is a more effective inhibitor of viral endocytosis than hydroxychloroquine in cellular models of COVID-19. MFQ-NPs are less toxic than molecular mefloquine, 100-150 nm in diameter, and possess a negative surface charge which facilitates uptake via endocytosis allowing inhibition of lysosomal proteases. MFQ-NPs inhibit coronavirus infection in mouse MHV-A59 and human OC43 coronavirus model systems and inhibit SARS-CoV-2-WA1 and its Omicron variant in a human lung epithelium model. This study demonstrates that organelle-targeted delivery is an effective means to inhibit viral infection.
Related articles
Related articles are currently not available for this article.