Optogenetic stimulation of the locus coeruleus enhances appetitive extinction in rats

This article has 14 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Extinction is a specific example of learning where a previously reinforced stimulus or response is no longer reinforced, and the previously learned behaviour is no longer necessary and must be modified. Current theories suggest extinction is not the erasure of the original learning but involves new learning that acts to suppress the original behaviour. Evidence for this can be found when the original behaviour recovers following the passage of time (spontaneous recovery), or reintroduction of the reinforcement (i.e., reinstatement). Recent studies have shown that pharmacological manipulation of noradrenaline (NA) or its receptors can influence appetitive extinction, however, the role and source of endogenous NA in these effects is unknown. Here, we examined the role of the locus coeruleus (LC) in appetitive extinction. Specifically, we tested whether optogenetic stimulation of LC neurons during extinction of a food-seeking behaviour would enhance extinction evidenced by reduced spontaneous recovery in future tests. LC stimulation during extinction trials did not change the rate of extinction but did serve to reduce subsequent spontaneous recovery suggesting that stimulation of the LC can augment reward-related extinction. Optogenetic inhibition of the LC during extinction trials reduced responding during the trials where it was applied, but no long-lasting changes in the retention of extinction were observed. Since not all LC cells expressed halorhodopisn, is possible that more complete LC inhibition or pathway-specific targeting would be more effective at suppressing extinction learning. These results provide further insight into the neural basis of appetitive extinction, and in particular the role of the LC. A deeper understanding of the physiological bases of extinction can aid development of more effective extinction-based therapies.

Related articles

Related articles are currently not available for this article.