Targeting Ribosome Biogenesis as a Novel Therapeutic Approach to Overcome EMT-related Chemoresistance in Breast Cancer

This article has 7 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Epithelial-to-mesenchymal transition (EMT) contributes significantly to chemotherapy resistance and remains a critical challenge in treating advanced breast cancer. The complexity of EMT, involving redundant pro-EMT signaling pathways and its paradox reversal process, mesenchymal-to-epithelial transition (MET), has hindered the development of effective treatments. In this study, we utilized a Tri-PyMT EMT lineage-tracing model and single-cell RNA sequencing (scRNA-seq) to comprehensively analyze the EMT status of tumor cells. Our findings revealed elevated ribosome biogenesis (RiBi) during the transitioning phases of both EMT and MET processes. RiBi and its subsequent nascent protein synthesis mediated by ERK and mTOR signalings are essential for EMT/MET completion. Importantly, inhibiting excessive RiBi genetically or pharmacologically impaired the EMT/MET capability of tumor cells. Combining RiBi inhibition with chemotherapy drugs synergistically reduced metastatic outgrowth of epithelial and mesenchymal tumor cells under chemotherapies. Our study suggests that targeting the RiBi pathway presents a promising strategy for treating patients with advanced breast cancer.

Significance

This study uncovers the crucial involvement of ribosome biogenesis (RiBi) in the regulation of epithelial and mesenchymal state oscillations in breast cancer cells, which plays a major role in the development of chemoresistant metastasis. By proposing a novel therapeutic strategy targeting the RiBi pathway, the study offers significant potential to enhance treatment efficacy and outcomes for patients with advanced breast cancer. This approach could help overcome the limitations of current chemotherapy options and address the complex challenges posed by EMT-mediated chemoresistance.

Related articles

Related articles are currently not available for this article.