Systematic exploration of bacterial form I rubisco maximal carboxylation rates
Abstract
Autotrophy is the basis for complex life on Earth. Central to this process is rubisco - the enzyme that catalyzes almost all carbon fixation on the planet. Yet, with only a small fraction of rubisco diversity kinetically characterized so far, the underlying biological factors driving the evolution of fast rubiscos in nature remain unclear. We conducted a high-throughput kinetic characterization of over 100 bacterial form I rubiscos, the most ubiquitous group of rubisco sequences in nature, to uncover the determinants of rubisco’s carboxylation velocity. We show that the presence of a carboxysome CO2concentrating mechanism correlates with faster rubiscos with a median 5-fold higher rate. In contrast to prior studies, we find that rubiscos originating from α-cyanobacteria exhibit the highest carboxylation rates among form I enzymes (≈10 s-1median versus <7 s-1in other groups). Our study systematically reveals biological and environmental properties associated with kinetic variation across rubiscos from nature.
Related articles
Related articles are currently not available for this article.