Potassium-mediated bacterial chemotactic response
Abstract
Bacteria in biofilms secrete potassium ions to attract free swimming cells. However, the basis of chemotaxis to potassium remains poorly understood. Here, using a microfluidic device, we found thatEscherichia colican rapidly accumulate in regions of high potassium concentration on the order of millimoles. Using a bead assay, we measured the dynamic response of individual flagellar motors to stepwise changes in potassium concentration, finding that the response resulted from the chemotaxis signaling pathway instead of the motor response to changes in the proton motive force (PMF). To characterize the chemotactic response to potassium, we exposed the bacteria to a range of potassium concentrations and measured the dose-response curve and adaptation kinetics via a FRET assay, finding that the chemotaxis pathway exhibited a sensitive response and fast adaptation to potassium. We further found that the two major chemoreceptors Tar and Tsr respond differently to potassium. Tar receptors exhibit a biphasic response, whereas Tsr receptors respond to potassium as an attractant. These different responses were consistent with the responses of the two receptors to intracellular pH changes. Therefore, bacteria may sense the change in potassium concentration by sensing the change in intracellular pH. The sensitive response and fast adaptation allow bacteria to sense and localize small changes in potassium concentration. As the ratio of the two major chemoreceptors changes with bacterial growth stages, the differential responses of Tar and Tsr receptors to potassium suggest that cells at different growth stages respond differently to potassium and may have different requirements for potassium.
Related articles
Related articles are currently not available for this article.