Surprising Features of Nuclear Receptor Interaction Networks Revealed by Live Cell Single Molecule Imaging

This article has 4 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Type 2 Nuclear Receptors (T2NRs) require heterodimerization with a common partner, the Retinoid X Receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and over-expression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells. Using single molecule tracking (SMT) and proximity-assisted photoactivation (PAPA), we monitored interactions between endogenously tagged retinoid X receptor (RXR) and retinoic acid receptor (RAR) in live cells. Unexpectedly, we find that higher expression of RAR, but not RXR increases heterodimerization and chromatin binding in U2OS cells. This surprising finding indicates the limiting factor is not RXR but likely its cadre of obligate dimer binding partners. SMT and PAPA thus provide a direct way to probe which components are functionally limiting within a complex TF interaction network providing new insights into mechanisms of gene regulation in vivo with implications for drug development targeting nuclear receptors.

Related articles

Related articles are currently not available for this article.