Hypothalamic representation of the imminence of predator threat detected by the vomeronasal organ in mice
Abstract
Animals have the innate ability to select optimal defensive behaviors with appropriate intensity in response to predator threats within specific contexts. Such innate behavioral decisions are thought to be computed in the medial hypothalamic nuclei, which contain neural populations that directly control defensive behavioral outputs. The vomeronasal organ (VNO) serves as a primary sensory channel for detecting predator cues by relaying signals to the medial hypothalamic nuclei, particularly the ventromedial hypothalamus (VMH), via the medial amygdala (MeA) and bed nucleus of the stria terminalis (BNST). Here, we demonstrate that cat saliva contains predator cues that signal the imminence of predator threat and modulate the intensity of freezing behavior through the VNO in mice. Cat saliva activates neurons expressing the V2R-A4 subfamily of sensory receptors, suggesting that specific receptor groups are responsible for inducing the freezing behavior. The number of VNO neurons activated in response to saliva correlates with both the freshness of saliva and the intensity of freezing behavior. In contrast, the downstream neurons in the accessory olfactory bulb (AOB) and the defensive behavioral circuit are activated to a similar extent by fresh and old saliva. Strikingly, however, the number of VMH neurons activated by fresh, but not old, saliva positively correlates with the intensity of freezing behavior. Detailed analysis of the spatial distribution of neurons responding to fresh and old saliva, as well as the overlap of those activated within the same individual mice, revealed that fresh and old saliva predominantly activate distinct neuronal populations within the VMH. Collectively, this study suggests that there is an accessory olfactory circuit in mice that is specifically tuned to time-sensitive components of cat saliva, which optimizes their defensive behavior to maximize their chance of survival according to the imminence of threat.
Related articles
Related articles are currently not available for this article.