Astrocyte aquaporin mediates a tonic water efflux maintaining brain homeostasis

This article has 9 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Brain water homeostasis not only provides a physical protection, but also determines the diffusion of chemical molecules key for information processing and metabolic stability. As a major type of glia in brain parenchyma, astrocytes are the dominant cell type expressing aquaporin water channel. How astrocyte aquaporin contributes to brain water homeostasis in basal physiology remains to be understood. We report that astrocyte aquaporin 4 (AQP4) mediates a tonic water efflux in basal conditions. Acute inhibition of astrocyte AQP4 leads to intracellular water accumulation as optically resolved by fluorescence-translated imaging in acute brain slices, andin vivoby fiber photometry in mobile mice. We then show that aquaporin-mediated constant water efflux maintains astrocyte volume and osmotic equilibrium, astrocyte and neuron Ca2+signaling, and extracellular space remodeling during optogenetically induced cortical spreading depression. Using diffusion-weighted magnetic resonance imaging (DW-MRI), we observed thatin vivoinhibition of AQP4 water efflux heterogeneously disturbs brain water homeostasis in a region-dependent manner. Our data suggest that astrocyte aquaporin, though bidirectional in nature, mediates a tonic water outflow to sustain cellular and environmental equilibrium in brain parenchyma.

Significance statement

Our brain is immersed, thus protected, in a water environment. It ensures intra- and extracellular molecular diffusion, which is vital for brain function and health. Brain water homeostasis is maintained by dynamic water transport between different cell types. Astrocytes are a main type of glial cell widely distributed in brain parenchyma, expressing the bidirectional aquaporin water channel. Here we show that in basal conditions, aquaporin channel mediates a tonic water efflux from astrocytes. This mechanism maintains astrocyte volume stability, activity-gated brain parenchyma remodeling and brain water homeostasis. Our finding sheds light on how astrocytes regulate water states in the brain, and will help to understand brain allostasis in specific life contexts.

Related articles

Related articles are currently not available for this article.