KIF1C, an RNA transporting kinesin-3, undergoes liquid-liquid phase separation through its C-terminal disordered domain

This article has 4 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

The spatial distribution of mRNA is critical for local control of protein production. Recent studies have identified the kinesin-3 family member KIF1C as an RNA transporter. However, it is not clear how KIF1C interacts with RNA molecules. Here, we show that KIF1C’s C-terminal tail domain is an intrinsically disordered region (IDR) containing a prion-like domain (PLD) that is unique compared to the C-terminal tails of other kinesin family members. In cells, KIF1C constructs undergo reversible formation of dynamic puncta that display physical properties of liquid condensates and incorporate RNA molecules in a sequence-selective manner. The IDR is necessary and sufficient for driving liquid-liquid phase separation (LLPS) but the condensate properties can be modulated by adjacent coiled-coil segments. The purified KIF1C IDR domain undergoes LLPSin vitroat near-endogenous nM concentrations in a salt-dependent manner. Deletion of the IDR abolished the ability of KIF1C to undergo LLPS and disrupted the distribution of mRNA cargoes to the cell periphery. Our work thus uncovers an intrinsic correlation between the LLPS activity of KIF1C and its role as an RNA transporter. In addition, as the first kinesin motor reported to undergo LLPS, our work reveals a previously uncharacterized mode of motor-cargo interaction that extends our understanding of the behavior of cytoskeletal motor proteins.

Related articles

Related articles are currently not available for this article.