The LH receptor regulates hippocampal spatial memory and restores dendritic spine density in ovariectomized APP/PS1 AD mice

This article has 8 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Activation of the luteinizing hormone receptor (LHCGR) rescues spatial memory function and spine density losses associated with gonadectomy and high circulating gonadotropin levels in females. However, whether this extends to the AD brain or the mechanisms that underlie these benefits remain unknown. To address this question, we delivered the LHCGR agonist human chorionic gonadotropin (hCG) intracerebroventricularly (ICV), under reproductively intact and ovariectomized conditions to mimic the post-menopausal state in the APP/PS1mouse brain. Cognitive function was tested using the Morris water maze task, and hippocampal dendritic spine density, Aβ pathology, and signaling changes associated with these endpoints were determined to address mechanisms. Here we show that central LHCGR activation restored function in ovariectomized APP/PS1 female mice to wild-type levels without altering Aβ pathology. LHCGR activation increased hippocampal dendritic spine density regardless of reproductive status, and this was mediated by BDNF-dependent and independent signaling. We also show that ovariectomy in the APP/PS1 brain elicits an increase in peripherally derived pro-inflammatory genes which are inhibited by LHCGR activation. This may mediate reproductive status specific effects of LHCGR agonism on cognitive function and BDNF expression. Together, this work highlights the relevance of the LHCGR on cognition and its therapeutic potential in the “menopausal” AD brain.

Related articles

Related articles are currently not available for this article.