Internalisation of integrin-bound extracellular matrix modulates invasive carcinoma cell migration

This article has 3 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

The interaction between cancer cells and the extracellular matrix (ECM) plays a pivotal role in tumour progression. While the extracellular degradation of ECM proteins has been well characterised, ECM endocytosis and its impact on cancer cell progression, migration and metastasis is poorly understood. ECM internalisation is increased in invasive breast cancer cells, suggesting it may support invasiveness. Here we developed a high-content screening assay to study ECM uptake. We identified that mitogen-activated protein kinase (MAPK) family members, MAP3K1 and MAPK11 (p38β), and the protein phosphatase 2 (PP2) subunit PPP2R1A were required for the internalisation of ECM-bound α2β1 integrin. Furthermore, α2β1 integrin was necessary for macropinocytosis of soluble dextran, identifying it as a novel and targetable regulator of macropinocytosis in cancer. Moreover, disruption of α2 integrin, MAP3K1, MAPK11 and PP2R1A-mediated ECM internalisation significantly impaired cancer cell migration and invasion in 2D and 3D culture systems. Finally, α2β1 integrin and MAP3K1 expression were significantly upregulated in pancreatic tumours and correlated with poor prognosis in pancreatic cancer patients. Strikingly, MAP3K1, MAPK11, PPP2R1A and α2 integrin expression were higher in chemotherapy-resistant tumours in breast cancer patients. Our results identified the α2β1 integrin/p38 signalling axis as a novel regulator of ECM endocytosis, which drives invasive migration and tumour progression.

Related articles

Related articles are currently not available for this article.