Raw signal segmentation for estimating RNA modification from Nanopore direct RNA sequencing data

This article has 14 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Estimating RNA modifications from Nanopore direct RNA sequencing data is a critical task for the RNA research community. However, current computational methods often fail to deliver satisfactory results due to inaccurate segmentation of the raw signal. We have developed a new method, SegPore, which leverages a molecular jiggling translocation hypothesis to improve raw signal segmentation. SegPore is a pure white-box model with enhanced interpretability, significantly reducing structured noise in the raw signal. We demonstrate that SegPore outperforms state-of-the-art methods, such as Nanopolish and Tombo, in raw signal segmentation across three large benchmark datasets. Moreover, the improved signal segmentation achieved by SegPore enables SegPore+m6Anet to deliver state-of-the-art performance in site-level m6A identification. Additionally, SegPore surpasses baseline methods like CHEUI in single-molecule level m6A identification.

Related articles

Related articles are currently not available for this article.