p66Shc Mediates SUMO2-induced Endothelial Dysfunction

This article has 5 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Background

Sumoylation is a post-translational modification that can regulate different physiological functions. Increased sumoylation, specifically conjugation of SUMO2/3 (small ubiquitin-like modifier 2/3), is detrimental to vascular health. However, the molecular mechanism mediating this effect is poorly understood.

Methods

We used cell-based assays and mass spectrometry to show that p66Shc is a direct target of SUMO2 and SUMO2 regulates p66Shc function via lysine-81 modification. To determine the effects of SUMO2-p66ShcK81 on vascular function, we generated p66ShcK81R knockin mice and crossbred to LDLr-/-mice to induce hyperlipidemia. Next, to determine p66ShcK81-SUMO2ylation-induced changes in endothelial cell signaling, we performed mass spectrometry followed by Ingenuity Pathway Analysis.

Results

Our data reveal that p66Shc mediates the effects of SUMO2 on endothelial cells. Mass spectrometry identified that SUMO2 modified lysine-81 in the unique collagen homology-2 domain of p66Shc. SUMO2ylation of p66Shc increased phosphorylation at serine-36, causing it to translocate to the mitochondria, a step critical for oxidative function of p66Shc. Notably, sumoylation-deficient p66Shc (p66ShcK81R) was resistant to SUMO2-induced p66ShcS36 phosphorylation and mitochondrial translocation. P66ShcK81R knockin mice were resistant to endothelial dysfunction induced by SUMO2ylation and hyperlipidemia. Ingenuity Pathway Analysis revealed multiple signaling pathways regulated by p66ShcK81-SUMO2ylation in endothelial cells, highlighting Rho-GTPase as a major pathway affected by SUMO2-p66ShcK81.

Conclusions

Collectively, our work reveals SUMO2-p66Shc signaling as a fundamental regulator of vascular endothelial function. We discovered that p66ShcK81 is an upstream modification regulating p66Shc signaling and mediates hyperlipidemia-induced endothelial dysfunction and oxidative stress.

Related articles

Related articles are currently not available for this article.