Srs2 binding to PCNA and its sumoylation contribute to RPA antagonism during the DNA damage response

This article has 5 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Activation of the DNA damage checkpoint upon genotoxin treatment induces a multitude of cellular changes, such as cell cycle arrest, to cope with genome stress. After prolonged genotoxin treatment, the checkpoint can be downregulated to allow cell cycle and growth resumption. In yeast, downregulation of the DNA damage checkpoint requires the Srs2 DNA helicase, which removes the ssDNA binding complex RPA and the associated Mec1 checkpoint kinase from DNA, thus dampening Mec1 activation. However, it is unclear whether the ‘anti-checkpoint’ role of Srs2 is temporally and spatially regulated to both allow timely checkpoint termination and to prevent superfluous RPA removal. Here we address this question by examining regulatory elements of Srs2, including its phosphorylation, sumoylation, and protein-interaction sites. Our genetic analyses and checkpoint level assessment suggest that the RPA countering role of Srs2 is promoted by Srs2 binding to PCNA, which is known to recruit Srs2 to subsets of ssDNA regions. RPA antagonism is further fostered by Srs2 sumoylation, which we found depends on the Srs2-PCNA interaction. Srs2 sumoylation is additionally reliant on Mec1 and peaks after Mec1 activity reaches maximal levels. Collectively, our data provide evidence for a two-step model wherein checkpoint downregulation is facilitated by PCNA-mediated Srs2 recruitment to ssDNA-RPA filaments and the subsequent Srs2 sumoylation stimulated upon Mec1 hyperactivation. We propose that this mechanism allows Mec1 hyperactivation to trigger checkpoint recovery.

Related articles

Related articles are currently not available for this article.