Photophysics-informed two-photon voltage imaging using FRET-opsin voltage indicators

This article has 9 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Microbial rhodopsin-derived genetically encoded voltage indicators (GEVIs) are powerful tools for mapping bioelectrical dynamics in cell culture and in live animals. Förster resonance energy transfer (FRET)-opsin GEVIs use voltage-dependent changes in opsin absorption to modulate the fluorescence of an atached fluorophore, achieving high brightness, speed, and voltage sensitivity. However, the voltage sensitivity of most FRET-opsin GEVIs has been reported to decrease or vanish under two-photon (2P) excitation. Here we investigated the photophysics of the FRET-opsin GEVIs Voltron1 and 2. We found that the voltage sensitivity came from a photocycle intermediate, not from the opsin ground state. The voltage sensitivities of both GEVIs were nonlinear functions of illumination intensity; for Voltron1, the sensitivity reversed sign under low-intensity illumination. Using photocycle-optimized 2P illumination protocols, we demonstrate 2P voltage imaging with Voltron2 in barrel cortex of a live mouse. These results open the door to high-speed 2P voltage imaging of FRET-opsin GEVIsin vivo.

Teaser

Voltage sensitivity in FRET-opsin indicators comes from a photocycle intermediate, reachable via optimized 2P excitation.

Related articles

Related articles are currently not available for this article.