Rtf1 HMD domain facilitates global histone H2B monoubiquitination and regulates morphogenesis and virulence in the meningitis-causing pathogenCryptococcus neoformans
Abstract
Rtf1 is generally considered to be a subunit of the Paf1 complex (Paf1C), which is a multifunctional protein complex involved in histone modification and RNA biosynthesis at multiple stages. Rtf1 is stably associated with the Paf1C inSaccharomyces cerevisiae, but not in other species including humans. Little is known about its function in human fungal pathogens. Here, we show that Rtf1 is required for facilitating H2B monoubiquitination (H2Bub1), and regulates fungal morphogenesis and pathogenicity in the meningitis-causing fungal pathogenCryptococcus neoformans. Rtf1 is not tightly associated with the Paf1C, and its histone modification domain (HMD) is sufficient to promote H2Bub1 and the expression of genes related to fungal mating and filamentation. Moreover, Rtf1 HMD fully restores fungal morphogenesis and pathogenicity; however, it fails to restore defects of thermal tolerance and melanin production in thertf1Δ strain background. The present study establishes a role for cryptococcal Rtf1 as a Paf1C-independent regulator in regulating fungal morphogenesis and pathogenicity, and highlights the function of HMD in facilitating global H2Bub1 inC. neoformans.
Related articles
Related articles are currently not available for this article.