Stimulus-specificity of surround-induced responses in primary visual cortex
Abstract
Recent studies in mice challenge the traditional notion of the V1 receptive field (RF) showing increases in V1 firing rates for stimuli presented in the surround, in the absence of a visual input into the classical RF. While this effect has been interpreted as a prediction of the occluded content or a prediction error, an alternative explanation is that it reflects the representation of the uniform achromatic (gray) surface itself. To study this, we systematically investigated the dependence of V1 rate increases on the properties of distal surround stimuli. We recorded V1 and LGN neurons using Neuropixels in awake mice and demonstrated surround-induced responses in V1. That is, V1 firing rates increase by presenting a grating stimulus in the distal surround, while the RF is covered by a large gray patch up to 90° of diameter. LGN firing rates decreased for the same stimuli. V1 response latencies showed a systematic increase with the size of the gray patch. Surround-induced responses did not require spatial continuity or motion coherence of the surround stimulus and generalized to noisy textures and black/white luminance surfaces. Responses to black/white surfaces on a gray background had a similar magnitude and response latency as surround-induced responses with a black/white background. Based on these findings, we suggest that surround-induced responses primarily reflect the representation of the achromatic surface itself, which can contribute to image segmentation.
Related articles
Related articles are currently not available for this article.