Neural basis of cognitive control signals in anterior cingulate cortex during delay discounting
Abstract
Cognitive control involves allocating cognitive effort according to internal needs and task demands and the Anterior Cingulate Cortex (ACC) is hypothesized to play a central role in this process. We investigated the neural basis of cognitive control in the ACC of rats performing an adjusting-amount delay discounting task. Decision-making in this this task can be guided by using either a lever-value tracking strategy, requiring a ‘resource-based’ form of cognitive effort or a lever-biased strategy requiring a ‘resistance-based’ form of cognitive effort. We found that ACC ensembles always tightly tracked lever value on each trial, indicative of a resource-based control signal. These signals were prevalent in the neural recordings and were influenced by the delay. A shorter delay was associated with devaluing of the immediate option and a longer delay was associated with overvaluing of the immediate option. In addition, ACC theta (6-12Hz) oscillations were observed at the choice point of rats exhibiting a resistance-based strategy. These data provide candidates of neural activity patterns in the ACC that underlie the use of ‘resource-based’ and ‘resistance-based’ cognitive effort. Furthermore, these data illustrate how strategies can be engaged under different conditions in individual subjects.
Related articles
Related articles are currently not available for this article.