Competition and cooperation: The plasticity of bacteria interactions across environments
Abstract
Bacteria live in diverse communities, forming complex networks of interacting species. A central question in bacterial ecology is why some species engage in cooperative interactions, whereas others compete. But this question often neglects the role of the environment. Here, we use genome-scale metabolic networks from two different open-access collections (AGORA and CarveMe) to assess pairwise interactions of different microbes in varying environmental conditions (provision of different environmental compounds). By scanning thousands of environments for 10,000 pairs of bacteria from each collection, we found that most pairs were able to both compete and cooperate depending on the availability of environmental resources. This approach allowed us to determine commonalities between environments that could facilitate the potential for cooperation or competition between a pair of species. Namely, cooperative interactions, especially obligate, were most common in less diverse environments. Further, as compounds were removed from the environment, we found interactions tended to degrade towards obligacy. However, we also found that on average at least one compound could be removed from an environment to switch the interaction from competition to facultative cooperation or vice versa. Together our approach indicates a high degree of plasticity in microbial interactions to the availability of environmental resources.
Related articles
Related articles are currently not available for this article.