Identification of the trail-following pheromone receptor in termites

This article has 4 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Chemical communication is the cornerstone of eusocial insect societies since it mediates the social hierarchy, division of labor, and concerted activities of colony members. The chemistry of social insect pheromones received considerable attention in both major groups of social insects, the eusocial Hymenoptera and termites. By contrast, current knowledge on molecular mechanisms of social insect pheromone detection by odorant receptors (ORs) is limited to hymenopteran social insects and no OR was yet functionally characterized in termites, the oldest eusocial insect clade. Here, we present the first OR deorphanization in termites. We selected four OR sequences from the previously annotated antennal transcriptome of the termite Prorhinotermes simplex (Rhinotermitidae), expressed them in Empty Neuron Drosophila, and functionally characterized using single sensillum recording (SSR) and a panel of termite semiochemicals. In one of the selected ORs, PsimOR14, we succeeded in obtaining strong and reliable responses to the main component of P. simplex trail-following pheromone, the monocyclic diterpene neocembrene. PsimOR14 showed a narrow tuning to neocembrene; only one additional compound out of 67 tested (geranylgeraniol) generated non-negligible responses. Subsequently, we used SSR in P. simplex workers and identified the olfactory sensillum specifically responding to neocembrene, thus likely expressing PsimOR14. We report on homology-based modelling of neocembrene binding by PsimOR14 and show how different ligands impact the receptor dynamicity using molecular dynamics simulations. Finally, we demonstrate that PsimOR14 is significantly more expressed in worker antennae compared to soldiers, which correlates with higher sensitivity of workers to neocembrene.

Related articles

Related articles are currently not available for this article.