Characterization of direct Purkinje cell outputs to the brainstem
Abstract
Purkinje cells (PCs) primarily project to cerebellar nuclei but also directly innervate the brainstem. Some PC-brainstem projections have been described previously, but most have not been thoroughly characterized. Here we use a PC-specific cre line to anatomically and electrophysiologically characterize PC projections to the brainstem. PC synapses are surprisingly widespread, with the highest densities found in the vestibular and parabrachial nuclei. However, there are pronounced regional differences in synaptic densities within both the vestibular and parabrachial nuclei. Large optogenetically-evoked PC-IPSCs are preferentially observed in subregions with the highest densities of PC synapses, suggesting that PCs selectively influence these areas and the behaviors they regulate. Unexpectedly, the pontine central gray and nearby subnuclei also contained a low density of PC synapses, and large PC-IPSCs are observed in a small fraction of cells. We combined electrophysiological recordings with immunohistochemistry to assess the molecular identities of these PC targets. PC synapses onto mesencephalic trigeminal neurons were not observed even though these cells are in close proximity to PC boutons. PC synapses onto locus coeruleus neurons are exceedingly rare or absent, even though previous studies concluded that PCs are a major input to these neurons. The availability of a highly selective cre line for PCs allowed us to study functional synapses, while avoiding complications that can accompany the use of viral approaches. We conclude that PCs directly innervate numerous brainstem nuclei, but only inhibit a small fraction of cells in many nuclei. This suggests that PCs target cell types with specific behavioral roles in brainstem regions.
Related articles
Related articles are currently not available for this article.