ATAD2 mediates chromatin-bound histone chaperone turnover
Abstract
ATAD2, a conserved protein which is predominantly expressed in embryonic stem (ES) cells and spermatogenic cells, emerges as a crucial regulator of chromatin plasticity. Our previous parallel studies conducted in both ES cells and S. pombe highlighted the fundamental role of ATAD2 in facilitating chromatin-bound histone chaperone turnover. Focusing on spermatogenesis, we demonstrate here that ATAD2 regulates the HIRA-dependent localization of H3.3 on the genome and influences H3.3-mediated gene transcription. Moreover, by modulating histone eviction and the assembly of protamines, ATAD2 ensures proper chromatin condensation and genome packaging in mature sperm. Disruption of Atad2 function in mice leads to abnormal genome organization in mature spermatozoa. Together, these findings establish a previously overlooked level of chromatin dynamic regulation, governed by ATAD2-controlled histone chaperones binding to chromatin, which defines the balance between histone deposition and removal.
Related articles
Related articles are currently not available for this article.