Cardiolipin deficiency disrupts electron transport chain to drive steatohepatitis

This article has 5 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive disorder marked by lipid accumulation, leading to metabolic dysfunction-associated steatohepatitis (MASH). A key feature of the transition to MASH involves oxidative stress resulting from defects in mitochondrial oxidative phosphorylation (OXPHOS). Here, we show that pathological alterations in the lipid composition of the inner mitochondrial membrane (IMM) directly instigate electron transfer inefficiency to promote oxidative stress. Specifically, mitochondrial cardiolipin (CL) was downregulated with MASLD/MASH in humans and in mice. Hepatocyte-specific CL synthase knockout (CLS-LKO) led to spontaneous and robust MASH with extensive steatotic and fibrotic phenotype. Loss of CL paradoxically increased mitochondrial respiratory capacity but also reduced the formation of I+III2+IV respiratory supercomplex, promoted electron leak primarily at sites IIIQOand IIFof the electron transport chain, and disrupted the propensity of coenzyme Q (CoQ) to become reduced. Thus, low mitochondrial CL disrupts electron transport chain to promote oxidative stress and contributes to pathogenesis of MASH.

Related articles

Related articles are currently not available for this article.