Stability vs flexibility: reshaping archaeal membranes in silico

This article has 6 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Cellular membranes differ across the tree of life. In most bacteria and eukaryotes, single-headed lipids self-assemble into flexible bilayer membranes. By contrast, thermophilic archaea tend to possess bilayer lipids together with double-headed, monolayer spanning bolalipids, which are thought to enable cells to survive in harsh environments. Here, using a minimal computational model for bolalipid membranes, we explore the trade-offs at play when forming membranes. We find that flexible bolalipids form membranes that resemble bilayer membranes because they are able to assume a U-shaped conformation. Conversely, rigid bolalipids, which resemble the bolalipids with cyclic groups found in thermophilic archaea, take on a straight conformation and form membranes that are stiff and prone to pore formation when they undergo changes in shape. Strikingly, however, the inclusion of small amounts of bilayer lipids in a bolalipid membrane is enough to achieve fluid bolalipid membranes that are both stable and flexible – resolving this trade-off. Our study suggests a mechanism by which archaea can tune the material properties of their membranes as and when required to enable them to survive in harsh environments and to undergo essential membrane remodelling events like cell division.

Related articles

Related articles are currently not available for this article.