Single-cell profiling of trabecular meshwork identifies mitochondrial dysfunction in a glaucoma model that is protected by vitamin B3 treatment

This article has 4 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Since the trabecular meshwork (TM) is central to intraocular pressure (IOP) regulation and glaucoma, a deeper understanding of its genomic landscape is needed. We present a multimodal, single-cell resolution analysis of mouse limbal cells (includes TM). In total, we sequenced 9,394 wild-type TM cell transcriptomes. We discovered three TM cell subtypes with characteristic signature genes validated by immunofluorescence on tissue sections and whole-mounts. The subtypes are robust, being detected in datasets for two diverse mouse strains and in independent data from two institutions. Results show compartmentalized enrichment of critical pathways in specific TM cell subtypes. Distinctive signatures include increased expression of genes responsible for 1) extracellular matrix structure and metabolism (TM1 subtype), 2) secreted ligand signaling to support Schlemm’s canal cells (TM2), and 3) contractile and mitochondrial/metabolic activity (TM3). ATAC-sequencing data identified active transcription factors in TM cells, including LMX1B. Mutations inLMX1Bcause high IOP and glaucoma. LMX1B is emerging as a key transcription factor for normal mitochondrial function and its expression is much higher in TM3 cells than other limbal cells. To understand the role of LMX1B in TM function and glaucoma, we single-cell sequenced limbal cells fromLmx1bV265D/+mutant mice. InV265D/+mice, TM3 cells were uniquely affected by pronounced mitochondrial pathway changes. This supports a primary role of mitochondrial dysfunction within TM3 cells in initiating the IOP elevation that causes glaucoma in these mice. Importantly, treatment with vitamin B3(nicotinamide), to enhance mitochondrial function and metabolic resilience, significantly protectedLmx1bmutant mice from IOP elevation.

Related articles

Related articles are currently not available for this article.