Blocking SHP2 benefits FGFR2 inhibitor and overcomes its resistance in FGFR2-amplified gastric cancer
Abstract
Fibroblast growth factor receptor 2 (FGFR2) is an important member of receptor tyrosine kinase (RTK) family. FGFR2 amplification occurs at a high frequency in gastric cancer (GC) and has been proven to be closely associated with poor prognosis and insensitivity to chemotherapy or immunotherapy. Current FGFR2-targeted therapies have limited efficacy. Hence, how to enhance efficacy and reverse resistance are urgent problems clinically. Src homology region 2-containing protein tyrosine phosphatase 2 (SHP2) serves as the shared downstream mediator of all RTKs and a prominence immunosuppressive molecule. In this study, we identified FGFR2 amplification in 6.2% (10/161) of GC samples in our center. Then we showed that dual blocking SHP2 and FGFR2 enhanced the effects of FGFR2 inhibitor (FGFR2i) in FGFR2-amplified GC bothin vitroandin vivovia suppressing RAS/ERK and PI3K/AKT pathways. We further showed that it overcame FGFR2i resistance by reversing the feedback activation mediated by other RTKs and continuously suppressing FGFR2-initiated downstream pathways. Notably, SHP2 blockade could suppress PD-1 expression and promoted IFN-γ secretion of CD8+T cells, enhancing the cytotoxic functions of T cells in tumor immune microenvironment. Overall, our findings suggest that dual blocking SHP2 and FGFR2 is a compelling rationale with both targeted treatment and immune regulation for FGFR2-amplified GC.
Impact statement
Dual blocking SHP2 and FGFR2 can not only promote the targeted tumor-killing effects and overcome FGFR2 inhibitor resistance caused by feedback activation, but also activate T cell-mediated anti-tumor immunity by inhibiting PD-1 pathway in FGFR2-amplified GC.
Related articles
Related articles are currently not available for this article.