Descending locus coeruleus noradrenergic signaling to spinal astrocyte subset is required for stress-induced pain facilitation

This article has 4 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

It is known that stress powerfully alters pain, but its underlying mechanisms remain elusive. Here, we identified a circuit, locus coeruleus descending noradrenergic neurons projecting to the spinal dorsal horn (LC→SDH-NA neurons), that is activated by acute exposure to restraint stress and is required for stress-induced mechanical pain hypersensitivity in mice. Interestingly, the primary target of spinal NA released from descending LC→SDH-NAergic terminals causing the stress-induced pain hypersensitivity was α1A-adrenaline receptors (α1ARs) in Hes5-positive (Hes5+) astrocytes located in the SDH, an astrocyte subset that has an ability to induce pain sensitization. Furthermore, activation of Hes5+astrocytes reduced activity of SDH-inhibitory neurons (SDH-INs) that have an inhibitory role in pain processing. This astrocytic reduction of IN activity was canceled by an A1-adenosine receptor (A1R)-knockdown in SDH-INs, and the A1R-knockdown suppressed pain hypersensitivity caused by acute restraint stress. Therefore, our findings suggest that LC→SDH-NA neuronal signaling to Hes5+SDH astrocytes and subsequent astrocytic reduction of SDH-IN activity are essential for pain facilitation caused by stress.

Related articles

Related articles are currently not available for this article.