Mitochondrial and Microtubule Defects in Exfoliation Glaucoma
Abstract
Exfoliation Syndrome (XFS) is an age-related systemic condition characterized by large aggregated fibrillar material deposition in the anterior eye tissues. This aggregate formation and deposition on the aqueous humor outflow pathway are significant risk factors for developing Exfoliation Glaucoma (XFG), a secondary open-angle glaucoma. XFG is a complex, multifactorial late-onset disease that shares common features of neurodegenerative diseases, such as altered cellular processes with increased protein aggregation, impaired protein degradation, and oxidative and cellular stress. XFG patients display decreased mitochondrial membrane potential and mitochondrial DNA deletions. Here, using Tenon Capsule Fibroblasts (TFs) from Normal (No Glaucoma) and XFG patients, we found that XFG TFs have impaired mitochondrial bioenergetics and increased reactive oxygen species (ROS) accumulation. These defects are associated with mitochondrial abnormalities as XFG TFs exhibit smaller mitochondria that contain dysmorphic cristae, with an increase in mitochondrial localization to lysosomes and slowed mitophagy flux. Mitochondrial dysfunction in the XFG TFs was associated with an increase in the dynamics of the microtubule cytoskeleton, decreased acetylated tubulin, and increased HDAC6 activity. Treatment of XFG TFs with a mitophagy inducer, Urolithin A, and a mitochondrial biogenesis inducer, NAD+precursor, Nicotinamide Ribose, improved mitochondrial bioenergetics and reduced ROS accumulation. Our results demonstrate abnormal mitochondria in XFG TFs and suggest that mitophagy inducers may represent a potential class of therapeutics for reversing mitochondrial dysfunction in XFG patients.
Related articles
Related articles are currently not available for this article.