TimeFlies: an snRNA-seq aging clock for the fruit fly head sheds light on sex-biased aging
Abstract
Although multiple high-performing epigenetic aging clocks exist, few are based directly on gene expression. Such transcriptomic aging clocks allow us to extract age-associated genes directly. However, most existing transcriptomic clocks model a subset of genes and are limited in their ability to predict novel biomarkers. With the growing popularity of single-cell sequencing, there is a need for robust single-cell transcriptomic aging clocks. Moreover, clocks have yet to be applied to investigate the elusive phenomenon of sex differences in aging. We introduce TimeFlies, a pan-cell-type scRNA-seq aging clock for theDrosophila melanogasterhead. TimeFlies uses deep learning to classify the donor age of cells based on genome-wide gene expression profiles. Using explainability methods, we identified key marker genes contributing to the classification, with lncRNAs showing up as highly enriched among predicted biomarkers. The top biomarker gene across cell types is lncRNA:roX1, a regulator of X chromosome dosage compensation, a pathway previously identified as a top biomarker of aging in the mouse brain. We validated this finding experimentally, showing a decrease in survival probability in the absence of roX1in vivo. Furthermore, we trained sex-specific TimeFlies clocks and noted significant differences in model predictions and explanations between male and female clocks, suggesting that different pathways drive aging in males and females.
Graphical Abstract
<fig id="ufig1" position="float" fig-type="figure" orientation="portrait"><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="625273v3_ufig1" position="float" orientation="portrait"/></fig>Related articles
Related articles are currently not available for this article.