CRL4DCAF12regulation of MCMBP ensures optimal licensing of DNA replication

This article has 0 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

The minichromosome maintenance (MCM2-7) protein complexes are central drivers of genome duplication. Distinct protein pools, parental and nascent MCMs, and their precise equilibrium are essential to sustain error-free DNA replication1. However, the mechanism responsible for generating these pools and maintaining their equilibrium remains largely unexplored. Here, we identified CRL4DCAF12as a new factor controlling the assembly of nascent MCM complexes. During MCM biogenesis, MCMBP facilitates the assembly and transport of newly synthesized MCM3-7 subcomplexes into the nucleus2,3. Once in the nucleus, the MCM2 subunit must be incorporated into the MCM3-7 subcomplex, while MCMBP needs to be removed. CRL4DCAF12facilitates the degradation of MCMBP and thereby regulates the assembly of MCM2-7 complexes. The absence of CRL4DCAF12adversely affects the level of chromatin-bound nascent MCMs, resulting in accelerated replication forks and genome instability. Collectively, our findings uncovered the molecular mechanism underlying nascent MCM production essential to counteract genome instability and tumor formation.

Related articles

Related articles are currently not available for this article.