Semantic mining of functionalde novogenes from a genomic language model
Abstract
Generative genomics models can design increasingly complex biological systems. However, effectively controlling these models to generate novel sequences with desired functions remains a major challenge. Here, we show that Evo, a 7-billion parameter genomic language model, can perform function-guided design that generalizes beyond natural sequences. By learning semantic relationships across multiple genes, Evo enables a genomic “autocomplete” in which a DNA prompt encoding a desired function instructs the model to generate novel DNA sequences that can be mined for similar functions. We term this process “semantic mining,” which, unlike traditional genome mining, can access a sequence landscape unconstrained by discovered evolutionary innovation. We validate this approach by experimentally testing the activity of generated anti-CRISPR proteins and toxin-antitoxin systems, includingde novogenes with no significant homology to any natural protein. Strikingly, in-context protein design with Evo achieves potent activity and high experimental success rates even in the absence of structural hypotheses, known evolutionary conservation, or task-specific fine-tuning. We then use Evo to autocomplete millions of prompts to produce SynGenome, a first-of-its-kind database containing over 120 billion base pairs of AI-generated genomic sequences that enables semantic mining across many possible functions. The semantic mining paradigm enables functional exploration that ventures beyond the observed evolutionary universe.
Related articles
Related articles are currently not available for this article.