Functionally diversified BiP orthologs control body growth, reproduction, stress resistance, aging, and ER-Phagy inCaenorhabditis elegans
Abstract
Cellular systems that govern protein folding rely on a delicate balance of functional redundancy and diversification to maintain protein homeostasis (proteostasis). Here, we useCaenorhabditis elegansto demonstrate how both overlapping and divergent activities of two homologous endoplasmic reticulum (ER)-resident HSP70 family chaperones, HSP-3 and HSP-4, orchestrate ER proteostasis and contribute to organismal physiology. We identify tissue-, age-, and stress-specific protein expression patterns and find both redundant and distinct functions for HSP-3 and HSP-4 in ER stress resistance, reproduction, and body size regulation. We show that only HSP-3 overexpression is sufficient to improve longevity and that loss of HSP-3 or HSP-4 during distinct stages of the worm cycle or specific tissues have opposing effects on worm lifespan. Furthermore, we find that loss of HSP-4, but not HSP-3, improves tolerance to protein aggregation induced-stress by activating ER-Phagy through the engagement of IRE-1 and the putative ER-Phagy receptor, C18E9.2. Mechanistically, we show that de-repression of IRE-1 via HSP-4 dissociation allows for direct inhibition of C18E9.2- mediated ER-Phagy and demonstrate that a conserved orthologous mechanism involving the respective human orthologs, BiP, Sec-62, and IRE-1, contributes to ER proteostasis regulation in human cells. Taken as a whole, our study demonstrates that functional diversification of orthologous proteins within a single organelle is an efficient mechanism to maximize stress resilience while also defining a novel link between ER- phagy and proteostasis regulation.
Related articles
Related articles are currently not available for this article.