Negative frequency-dependent selection contributes to modular structure of effector repertoires in Pseudomonas syringae
Abstract
The evolutionary fate of multi-strain pathogens is shaped by host-pathogen ecological interactions. In bacterial pathogens of plants, enhanced strain characterization and advances in our understanding of molecular mechanisms underlying defense pathways open the door for revisiting the role of negative frequency-dependent selection (NFDS) in strain structure, including its interplay with genetic exchange. NFDS arising from specific defense is one potential mechanism for generating, maintaining, and structuring pathogen diversity. In plants, specific protection against microbial pathogens involves Resistance proteins (R-proteins) that recognize virulence factors (effectors) secreted by pathogens, typically to subvert the initial line of host defense. Here we formulate a stochastic computational co-evolution model that explicitly incorporates variable length R-gene and effector repertoires, and migration from their regional pools. We use this model to understand potential mechanisms shaping effector repertoire structure and associated strain coexistence in the generalist plant pathogen P. syringae. The demonstration of a modular structure in our numerical simulations motivates the analysis of genome sequences from 76 strains collected in the Midwestern US and 1104 strains from global sources. We find that effector repertories both locally and globally exhibit a modular structure, with higher similarity within than between clusters. The observed modules are consistent with the core genome phylogeny and are unexplained by plant host species, location of isolation, and genetic linkage between effectors. An extension of the model is needed to take into account the evidence for genetic exchange and the phylogenetic congruence of effector modules. We initialize the system with a phylogenetically congruent modular structure and include recombination rates decreasing as a function of phylogenetic distance. We show that NFDS can counter-balance the effects of mixing due to recombination and in so doing, contributes to the maintenance of strain structure. These findings indicate that the observed similarity clusters may constitute, in part, emergent niches arising from eco-evolutionary dynamics that contribute to strain coexistence.
Related articles
Related articles are currently not available for this article.