Glycogen Engineering Improves the Starvation Resistance of Mesenchymal stem cells and their Therapeutic Efficacy in Pulmonary Fibrosis

This article has 4 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Mesenchymal stem cells (MSCs) are widely used in regenerative medicine, including the treatment of pulmonary fibrosis. However, implanted MSCs disappear within days, constraining therapeutic efficacy, which is largely attributed to nutrient deprivation. In this study, we established glycogen metabolism engineering strategies in mammalian cells. By expressing a functionally optimized glycogen synthase (GYSmut), MSCs could accumulate large amounts of glycogen rapidly as a reserve substance. Glycogen engineering significantly improved the survival of MSCs during starvation both in vitro and in vivo, enhancing cell viability post-implantation and their therapeutic efficacy in pulmonary fibrosis. Glycogen-engineered MSCs may serve as chassis cells for further applications. Our research highlights the importance of glucose metabolism regulation in cell-based therapy and demonstrates the great potential for the metabolic engineering of MSCs and other therapeutic cells.

Related articles

Related articles are currently not available for this article.