Probing the substrate binding-induced conformational change of a ZIP metal transporter using a sandwich ELISA
Abstract
Zrt-/Irt-like proteins (ZIPs), a family of divalent metal transporters, are crucial for maintaining the homeostasis of zinc, an essential trace element involved in numerous biological processes. While extensive research on the prototypical ZIP fromBordetella bronchiseptica(BbZIP) have suggested an elevator transport mechanism, the dynamic conformational changes during the transport cycle have not been thoroughly studied. In this work, we developed a sandwich ELISA using a custom anti-BbZIP monoclonal antibody to investigate the conformational change induced by the metal binding to the transport site. This was achieved by determining the accessibility of a cysteine residue introduced at a position exposed to the solvent only when the transporter adopts an outward-facing conformation. This assay allowed us to report the dissociation constants of BbZIP for Zn2+and Cd2+at low and sub-micromolar levels, respectively. Notably, the installation of a positive charge at the M2 site drastically reduced metal binding at the M1 site, consistent with an auxiliary role for the M2 site in metal transport. We also demonstrated that this assay can be used to rapidly screen variants for subsequent structural study. We anticipate that other transporters where substrate binding induces large conformational changes can also be studied using this method.
Related articles
Related articles are currently not available for this article.