Human-Specific Suppression of Hepatic Fatty Acid Catabolism by RNA-Binding Protein HuR
Abstract
RNA binding proteins (RBPs) play essential roles in all major steps of RNA processing. Genetic studies in human and mouse models support that many RBPs are crucial for maintaining homeostasis in key tissues/organs, but to what extent the function of RBPs is conserved between humans and mice is not clear. Our recent study using a chimeric humanized liver mouse model found that knocking down human HuR in human hepatocytes resulted in a broad upregulation of human genes involved in fatty acid catabolism. This regulation is human-specific, as the knocking down of mouse HuR in the liver of traditional mouse models did not show these effects. To further study this human-specific role of HuR, we co-overexpressed HuR with PPARα, a master transcription factor that promotes fatty acid catabolism, in cultured cells. We found that HuR suppressed the expression of PPARα induced fatty acid catabolism genes in human cells but not in mouse cells. We provide evidence supporting that the human-specific suppressive effect of HuR is independent of PPARα expression or location. The regulatory effects of HuR are also independent of its role in regulating mRNA stability. Using the human HMGCS2 gene as an example, we found that the suppressive effect of HuR cannot be explained by decreased promoter activity. We further provide evidence supporting that HuR suppresses the pre-mRNA processing of HMGCS2 gene, leading to accumulated intron/pre-mRNA expression of HMGCS2 gene. Furthermore, overexpression of HuR blocked and knocking down of HuR sensitized PPARα agonist-induced gene expression. By analyzing published RNA-seq data, we found compromised pre-mRNA processing for fatty acid catabolism genes in patients with fatty liver diseases, which was not observed in mouse fatty liver disease models. Our study supports the model that HuR suppresses the expression of fatty acid catabolism genes by blocking their pre-mRNA processing, which may partially explain the mild effects of PPARα agonists in treating fatty liver diseases in humans as compared with studies in mice.
Related articles
Related articles are currently not available for this article.