Microglia and Chek2 contribute to sex-specific organization of the adult zebrafish brain
Abstract
Sex specific differences in size and distribution of cell types have been observed in mammalian brains. How sex-specific differences in the brain are established and to what extent sexual dimorphism contributes to sex-biased neurodevelopment and neurological disorders is not well understood. Microglia are the resident immune cells of the nervous system and have been implicated in masculinizing the mammalian brain and refining neural connections to promote remodeling of neural circuitry, yet their contributions to developmental brain patterning and plasticity in zebrafish remains unclear. Here, we report anatomical and cellular differences between juvenile brains and adult female and male brains. Leveraging the plasticity of the zebrafish female brain and genetic models lacking microglia and tumor suppressor factors, we provide insight into the mechanisms that establish sex-specific brain dimorphism in zebrafish. Specifically, we identified sexually dimorphic features in the adult zebrafish brain that depend on microglia and Chek2, which may have broader implications and represent therapeutic targets for sex-biased neurological disorders.
Related articles
Related articles are currently not available for this article.