Evaluating Regulatory Module Function within Mitochondrial Pyruvate Dehydrogenase Complex

This article has 0 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Regulatory networks coordinate metabolism to control how plants adapt to biotic and abiotic stresses. This coordination can align transcriptional shifts across metabolic pathways using cis-regulatory elements shared across the enzyme genes within these pathways. While the role of transcription factors (TFs) in controlling this process across pathways is well known, less is known regarding the role of shared cis-regulatory elements across the genes in a pathway. Sharing cis-regulatory elements across the genes in an enzyme complex or pathway, can create coordinated regulation of the pathway by a TF. However, it is unclear if all the genes in a pathway or enzyme complex need to be fully coordinated for maximal function. For example, if one gene in an enzyme complex loses a cis-regulatory element, it may not alter the function of the enzyme complexes function if post-transcriptional or compensatory transcriptional changes are sufficient to balance the complex. To test how cis-modular membership shapes the function of an enzyme complex, we used CRISPR/Cas9 to abolish a common cis-regulatory element across the promoters of nine genes required for the mitochondrial pyruvate dehydrogenase complex (mtPDC). This complex is composed of three apoenzymes and is a central hub coordinating carbon flow between glycolysis and the tricarboxylic acid (TCA) cycle. Different combinations of these cis-element mutations were tested across the genes in the complex in Arabidopsis thaliana and the created genotypes were phenotyped for altered enzyme function using digital growth analysis, disease assays, metabolomics, and transcriptomics. This analysis revealed that mutating cis-element motifs of genes in this enzyme complex produced distinct phenotypes, displaying promoter-specific buffering and modularity.

Related articles

Related articles are currently not available for this article.