MetaMap: An atlas of metatranscriptomic reads in human disease-related RNA-seq data
Abstract
Background
With the advent of the age of big data in bioinformatics, large volumes of data and high performance computing power enable researchers to perform re-analyses of publicly available datasets at an unprecedented scale. Ever more studies imply the microbiome in both normal human physiology and a wide range of diseases. RNA sequencing technology (RNA-seq) is commonly used to infer global eukaryotic gene expression patterns under defined conditions, including human disease-related contexts, but its generic nature also enables the detection of microbial and viral transcripts.
Findings
We developed a bioinformatic pipeline to screen existing human RNA-seq datasets for the presence of microbial and viral reads by re-inspecting the non-human-mapping read fraction. We validated this approach by recapitulating outcomes from 6 independent controlled infection experiments of cell line models and comparison with an alternative metatranscriptomic mapping strategy. We then applied the pipeline to close to 150 terabytes of publicly available raw RNA-seq data from >17,000 samples from >400 studies relevant to human disease using state-of-the-art high performance computing systems. The resulting data of this large-scale re-analysis are made available in the presented MetaMap resource.
Conclusions
Our results demonstrate that common human RNA-seq data, including those archived in public repositories, might contain valuable information to correlate microbial and viral detection patterns with diverse diseases. The presented MetaMap database thus provides a rich resource for hypothesis generation towards the role of the microbiome in human disease.
Related articles
Related articles are currently not available for this article.