Single-cell Transcriptomic Landscape of Nucleated Cells in Umbilical Cord Blood
Abstract
Umbilical cord blood (UCB) transplant is a therapeutic option for both pediatric and adult patients with a variety of hematologic diseases such as several types of blood cancers, myeloproliferative disorders, genetic diseases, and metabolic disorders. However, the level of cellular heterogeneity and diversity of nucleated cells in the UCB has not yet been assessed in an unbiased and systemic fashion. In the current study, nucleated cells from UCB were subjected to single-cell RNA sequencing, a technology enabled simultaneous profiling of the gene expression signatures of thousands of cells, generating rich resources for further functional studies. Here, we report the transcriptomic maps of 19,052 UCB cells, covering 11 major cell types. Many of these cell types are comprised of distinct subpopulations, including distinct signatures in NK and NKT cell types in the UCB. Pseudotime ordering of nucleated red blood cells (NRBC) identifies wave-like activation and suppression of transcription regulators, leading to a polarized cellular state, which may reflect the NRBC maturation. Progenitor cells in the UBC also consist two subpopulations with divergent transcription programs activated, leading to specific cell-fate commitment. Collectively, we provide this comprehensive single-cell transcriptomic landscape and show that it can uncover previously unrecognized cell types, pathways and gene expression regulations that may contribute to the efficacy and outcome of UCB transplant, broadening the scope of research and clinical innovations.
Related articles
Related articles are currently not available for this article.