Inter-organ growth coordination is mediated by the Xrp1/Dilp8 axis in Drosophila
Abstract
How organs scale with other body parts is not mechanistically understood. We have addressed this question using the Drosophila imaginal disc model. When growth of one disc domain is perturbed, other parts of the disc and other discs slow down their growth, maintaining proper inter-disc and intra-disc proportions. We show here that the relaxin-like Dilp8 is required for this inter-organ coordination. Our work also reveals that the stress-response transcription factor Xrp1 plays a key role upstream of dilp8 in linking organ growth status with non-autonomous/systemic growth response. In addition, we show that the small ribosomal subunit protein RpS12 is required to trigger Xrp1-dependent non-autonomous response. Our work demonstrates that RpS12, Xrp1 and Dilp8 constitute a new, independent regulatory module that ensures intra- and inter-organ growth coordination during development.
Related articles
Related articles are currently not available for this article.