Oxygen supply capacity in animals evolves to meet maximum demand at the current oxygen partial pressure regardless of size or temperature

This article has 1 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Physiological oxygen supply capacity is associated with athletic performance and cardiovascular health and is thought to cause hypometabolic scaling in diverse species. Environmental oxygen is widely believed to be limiting of metabolic rate and aerobic scope, setting thermal tolerance and body size limits with implications for species diversity and biogeography. Here we derive a quantifiable linkage between maximum and basal metabolic rate and their temperature, size and oxygen dependencies. We show that, regardless of size or temperature, the capacity for oxygen supply precisely matches the maximum evolved demand at the highest persistently available oxygen pressure which, for most species assessed, is the current atmospheric pressure. Any reduction in oxygen partial pressure from current values will result in a decrement in maximum metabolic performance. However, oxygen supply capacity does not constrain thermal tolerance and does not cause hypometabolic scaling. The critical oxygen pressure, typically viewed as an indicator of hypoxia tolerance, instead reflects adaptations for aerobic scope. This simple new relationship redefines many important physiological concepts and alters their ecological interpretation.

One sentence summary: Metabolism is not oxygen limited

Related articles

Related articles are currently not available for this article.